Exercise 4

Use residues to evaluate the definite integrals in Exercises 1 through 7.

$$
\begin{gathered}
\int_{0}^{2 \pi} \frac{d \theta}{1+a \cos \theta} \quad(-1<a<1) \\
\text { Ans. } \frac{2 \pi}{\sqrt{1-a^{2}}}
\end{gathered}
$$

Solution

Because the integral goes from 0 to 2π, it can be thought of as one over the unit circle in the complex plane.

Figure 1: This figure illustrates the unit circle in the complex plane, where $z=x+i y$.
This circle is parameterized in terms of θ by $z=e^{i \theta}=\cos \theta+i \sin \theta$. Solve for $\cos \theta$ and $d \theta$ in terms of z and $d z$, respectively.

$$
\left\{\begin{array}{rlcc}
z=e^{i \theta}=\cos \theta+i \sin \theta & & z+z^{-1}=2 \cos \theta & \rightarrow \\
\cos \theta=\frac{z+z^{-1}}{2} \\
z^{-1}=e^{-i \theta}=\cos \theta-i \sin \theta & \rightarrow & & \\
z=e^{i \theta} & \rightarrow & d z=i e^{i \theta} d \theta=i z d \theta & \rightarrow \\
d \theta=\frac{d z}{i z}
\end{array}\right.
$$

With this change of variables the integral in $d \theta$ will become a positively oriented closed loop integral over the circle's boundary C.

$$
\begin{aligned}
\int_{0}^{2 \pi} \frac{d \theta}{1+a \cos \theta} & =\oint_{C} \frac{1}{1+a\left(\frac{z+z^{-1}}{2}\right)} \frac{d z}{i z} \\
& =\oint_{C} \frac{2}{z^{2}+\frac{2}{a} z+1} \frac{d z}{i a}
\end{aligned}
$$

According to the Cauchy residue theorem, such an integral in the complex plane is equal to $2 \pi i$ times the sum of the residues inside C. Determine the two singular points of the integrand by
solving for the roots of the denominator.

$$
\begin{gathered}
i a\left(z^{2}+\frac{2}{a} z+1\right)=0 \\
z^{2}+\frac{2}{a} z+1=0 \\
z=\frac{-\frac{2}{a} \pm \sqrt{\frac{4}{a^{2}}-4}}{2}=-\frac{1}{a} \pm \frac{\sqrt{1-a^{2}}}{a}=\frac{-1 \pm \sqrt{1-a^{2}}}{a} \rightarrow\left\{\begin{array}{l}
z_{1}=\frac{-1+\sqrt{1-a^{2}}}{a} \\
z_{2}=\frac{-1-\sqrt{1-a^{2}}}{a}
\end{array}\right.
\end{gathered}
$$

Since $-1<a<1$, there is only one singular point inside the unit circle, namely $z=z_{1}$, so there is only one residue to calculate.

$$
\oint_{C} \frac{2}{z^{2}+\frac{2}{a} z+1} \frac{d z}{i a}=2 \pi i \operatorname{Res}_{z=z_{1}} \frac{2}{z^{2}+\frac{2}{a} z+1} \frac{1}{i a}
$$

The denominator can be factored as $z^{2}+\frac{2}{a} z+1=\left(z-z_{1}\right)\left(z-z_{2}\right)$. From this we see that the multiplicity of the factor $z-z_{1}$ is 1 , so the residue is calculated by

$$
\operatorname{Res}_{z=z_{1}} \frac{2}{z^{2}+\frac{2}{a} z+1} \frac{1}{i a}=\phi\left(z_{1}\right),
$$

where $\phi(z)$ is the same function as the integrand without the factor $z-z_{1}$.

$$
\phi(z)=\frac{2}{z-z_{2}} \frac{1}{i a}
$$

So then

$$
\operatorname{Res}_{z=z_{1}} \frac{2}{z^{2}+\frac{2}{a} z+1} \frac{1}{i a}=\frac{2}{z_{1}-z_{2}} \frac{1}{i a}=\frac{2}{\frac{2}{a} \sqrt{1-a^{2}}} \frac{1}{i a}=\frac{1}{i \sqrt{1-a^{2}}}
$$

and

$$
\oint_{C} \frac{2}{z^{2}+\frac{2}{a} z+1} \frac{d z}{i a}=2 \pi i\left(\frac{1}{i \sqrt{1-a^{2}}}\right)=\frac{2 \pi}{\sqrt{1-a^{2}}} .
$$

Therefore,

$$
\int_{0}^{2 \pi} \frac{d \theta}{1+a \cos \theta}=\frac{2 \pi}{\sqrt{1-a^{2}}} \quad(-1<a<1) .
$$

