Churchill Complex Variables 8e: Section 85 - Exercise 4 Page 1 of 2

Exercise 4

Use residues to evaluate the definite integrals in Exercises 1 through 7.
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Solution

Because the integral goes from 0 to 27, it can be thought of as one over the unit circle in the
complex plane.
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Figure 1: This figure illustrates the unit circle in the complex plane, where z = x + iy.
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This circle is parameterized in terms of 6 by z = € = cos + isinf. Solve for cos@ and df in

terms of z and dz, respectively.
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With this change of variables the integral in df will become a positively oriented closed loop
integral over the circle’s boundary C.
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According to the Cauchy residue theorem, such an integral in the complex plane is equal to 2m¢
times the sum of the residues inside C'. Determine the two singular points of the integrand by
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solving for the roots of the denominator.
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Since —1 < a < 1, there is only one singular point inside the unit circle, namely z = 21, so there is
only one residue to calculate.
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The denominator can be factored as 22 + 22 +1 = (2 — 21)(2 — 22). From this we see that the

multiplicity of the factor z — z1 is 1, so the residue is calculated by
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